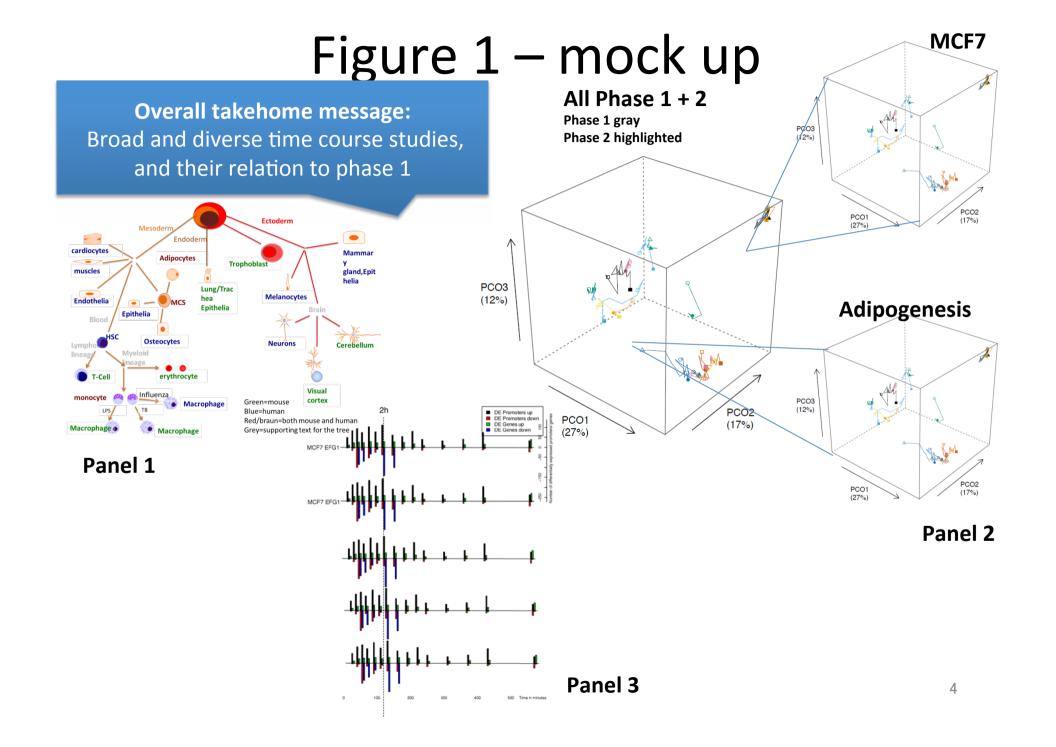
Time-course paper

Carsten O. Daub Albin Sandelin Erik Arner


Version: February 10th, 2014

Sections

- 1. Introduction
- 2. Data descriptor/Resource/novel stuff Fig 1
 - Broad coverage of state change
 - In particular, new and dynamic enhancers are observed
 - Dynamic promoters/enhancers
- 3. Immediate Early Response Fig 2 on promoter level, Figure 3 on enhancer level
 - High resolution
 - Sanity check (we see known IER genes)
 - We observe large diversity in ER genes between time courses
 - Respnse patters of enahcners close to IER genes (how many etc)
 - Clustering of enhancers and charaterization of super-early enhancers
- 4. General overview of typical response patterns for promoters and enhancers over multiple time courses
 - Rule-based method to classify expression profiles over time into 7 cases shows...
 - Clear difference between regulators and other types of genes
- 5. Dynamics in promoter-enhancer interaction Fig 4. Short and long term?
 - CAGE allows for simultaneous study of promoter and enhancer temporal dynamics at high resolution
 - Timed order of enhancers, TFs, promoters. Can we classify these based on motif context (machine learning?)
 - Driver TFs of enhancer/promoter dynamics (MARA)
- 6: Case stories . Figure 5
 - 1. SRF antisense (time course?)
 - 2. Domain loss over time in LPS (Berit)

Figure 1

- Section: Resource
 - Panel 1: Differentiation tree of our systems
 - Andreas
 - Panel 2: MDS plot (3D) of phase 2 data in the context of Phase 1
 - Plus zoomed in 3D view of adipogenesis and MCF-7 time courses
 - Carsten/Robin/Morana
 - Panel 3: Mini plots of all time courses
 - number of expressed promoters/enhancers/TFs
 - number of DE expressed promoters/enhancers/TFs
 - Carsten

Figure 2: IER promoter response

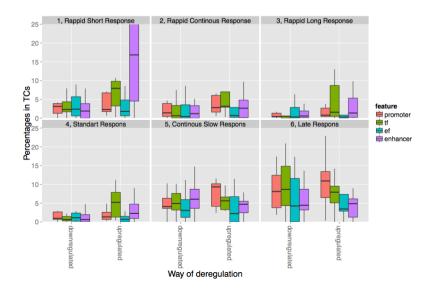
- Section: Immediate Early Response
 - Panel 1: Expression profile of known IER promoters for ~
 4 time courses
 - The rest in supplement figure
 - Carsten/Erik
 - Panel 2: Heat map of data driven identification of IER promoters
 - Visualizes the number of time courses each promoter is immediate early in
 - Sorted from highest to lowest number of TCs
 - Human (mouse in supplement)
 - Erik
 - Panel 2 and 3 may be merged. Panel 4 may be moved to supplement

Figure 2 – mock up

Panel 1 Panel 2 Panel 3 Panel 4

Overall takehome message:


Partially shared but also diverse IER across time series. Also shows IER enhancers around IER genes (and by themselves) as an intro to next sections

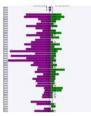

Figure 3: Enhacners IER

- Panel 1: Heat map of immediate early status of enhancer closest to promoter by same ordering as panel 2
 - Human (mouse in supplement)
 - Albin
- Panel 2: Heat map of data driven identification of IER enhancers
 - As panel 2. Or just clusters.
 - Erik
- Panel 3-4: characterization of very early dropping enhancers(Kristoffer/Robin/Morana). Examples, motifs and euler diagram

Figure 4: Expression trends over multiple time series

- Expansion of early response concept
- It is possible to classify most (80%?) of expression profilesin time series to 7 generic patterns
- This means that we can compare time courses
 - Same meta-patterns in each?
 - Same genes do same thing in each, or is it differentgenes/enhancers
 - Gene class differences

Figure 5: eRNA and promoter interactions


- Section: Transcriptional dynamics of promoters and enhancers
 - Panel 1: Genome browser + expression profile view of known enhancer/ promoter pair, where expression timing is similar
 - Erik
 - Panel 2: Genome browser + expression profile view of known enhancer/ promoter pair, where expression timing is shifted
 - Erik
 - Panel 3: Cumulative distributions of number of differentially expressed promoters/enhancers
 - Erik
 - Panel 4: Distributions of lag between enhancer/promoter peak expression
 - Robin
 - Panel 5: the same, but from an enhancer perspective (Kristoffer)
 - Panel 6: Drivers of transcriptional activities
 - Examples of aligned and shifted motif activities in same/different time courses
 - Erik

Overall takehome message:

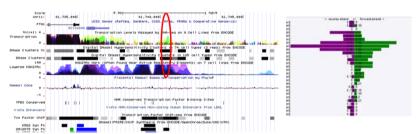
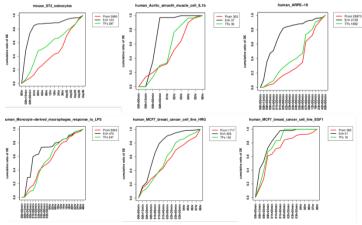
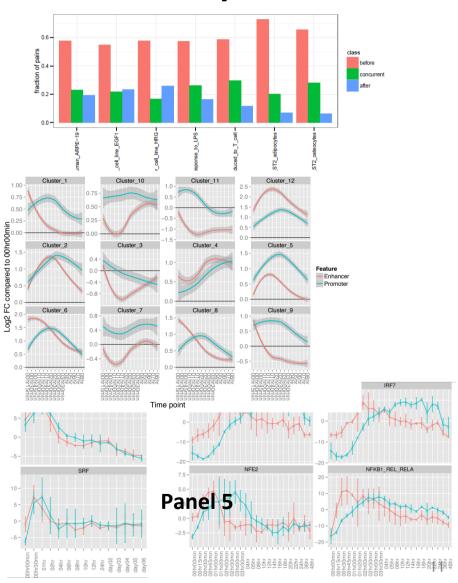

Diversity in timing difference between enhancers and promoters, also at the regulatory level

Figure 5 – mock up




Panel 1

Panel 3

Figure 6: case stories

- SRF story
- Protein domain loss story
- More?
- I think 2-4 would be good.